(6)

	_	
	•	
w		ı

This question is about iron and its ions.

(a) Discuss the role of iron as a heterogeneous catalyst in the Haber process.

$$3 H_2 + N_2 \rightleftharpoons 2 NH_3$$

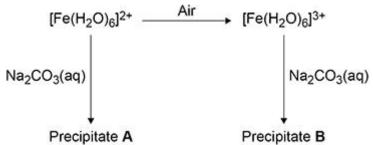
Your answer should include:

- the meaning of the term heterogeneous catalyst
- how iron acts as a heterogeneous catalyst
- the factors that affect the efficiency and lifetime of the catalyst.

(b) Fe²⁺ ions catalyse the reaction between peroxodisulfate(VI) ions and iodide ions in aqueous solution.

$$S_2O_8^{2-}(aq) + 2 I^{-}(aq) \rightarrow 2 SO_4^{2-}(aq) + I_2(aq)$$

Explain why this reaction is slow before the catalyst is added. Give **two** equations to show how Fe²⁺ ions catalyse this reaction.

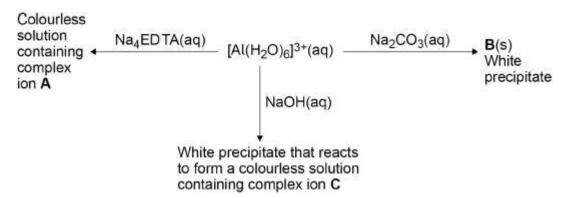

Why reaction is slow before catalyst added						

Equation 2	2
Give a rea	son why Zn ²⁺ ions do not catalyse the reaction in part (b).
lron reacts hydrogen.	s with dilute hydrochloric acid to form iron(II) chloride and
	$Fe(s) + 2 \ HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$
A 0.998 g hydrochloi	sample of pure iron is added to 30.0 cm ³ of 1.00 mol dm ⁻³ ric acid.
	ese reagents is in excess and the other reagent limits the amount en produced in the reaction.
Calculate and 100 k	the maximum volume, in m³, of hydrogen gas produced at 30 °C Pa.
Give your	answer to 3 significant figures.
In your an	swer you should identify the limiting reagent in the reaction.
The gas o	onstant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Volume of hydrogen $____ m^3$

(6)

The figure below shows some reactions of iron ions in aqueous solution.


	112203(114)
	Precipitate A Precipitate B
(e)	Identify A and state its colour.
	Identity
	Colour
(f)	Give the formula of B and state its colour.
	Give an ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na_2CO_3 to form B .
	Formula
	Colour
	Ionic equation
(g)	Explain why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH than an aqueous solution containing $[Fe(H_2O)_6]^{2+}$ ions.

(3)

(Total 25 marks)

Q2.

Some reactions of the $[Al(H_2O)_6]^{3+}(aq)$ ion are shown.

(a) Give the formula of the white precipitate **B**.

State **one** other observation when $Na_2CO_3(aq)$ is added to a solution containing $[Al(H_2O)_6]^{3+}(aq)$ ions.

Give an equation for this reaction.

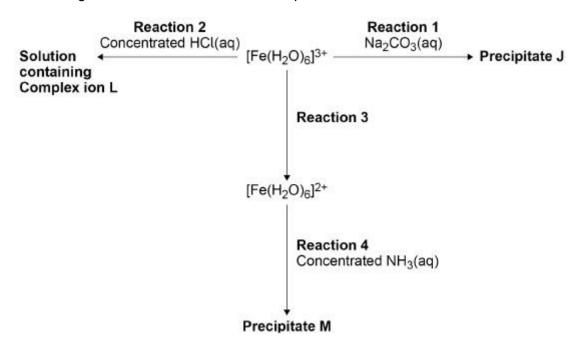
Formula of B		
Observation		
Equation		

(b) Give the formula of the complex ion **C**.

State **one** condition needed for the formation of **C** from $[Al(H_2O)_6]^{3+}(aq)$ and NaOH(aq).

Give an equation for this reaction.

Formula of C	
Condition	
Equation	


(3)

(3)

Deduce the formula of the complex ion A.
Explain, with the use of an equation, why a solution containing $[Al(H_2O)_6]^{3+}$ has a pH <7
Equation
Explanation
(Total 10

Q3.

The diagram shows some reactions of aqueous iron ions.

(a) Give the formula of **Precipitate J** and state its colour.

Give an equation for **Reaction 1**. Formula of **J**

Equation	
Give the formula	of L and an equation for Reaction 2 .
Formula of L	
Equation	
Suggest a reage	nt for Reaction 3 .
Give the formula	of Precipitate M and state its colour.
Formula of M	
Colour	
Fransition metal somerism.	complexes have different shapes and many show
different types o	erent shapes of complexes and show how they lead to f isomerism. f complexes of cobalt(II) and platinum(II).
You should drav	v the structures of the examples chosen.

PhysicsAndMathsTutor.com

AQA Chemistry A-Level - Reactions of lons in Aqueous Solution QP

Q5.

	Observation 1
	Equation 1
	Observation 2
	Equation 2
	(Total 9 mai
The	following tests were carried out to identify an unknown green salt Y.
	aqueous solution of Y gave a cream precipitate of compound A when reacted silver nitrate solution.
	npound A gave a colourless solution when reacted with concentrated nonia solution.
	ther aqueous solution of Y gave a green precipitate B when reacted with um carbonate solution.
	green precipitate B was filtered and dried and then reacted with sulfuric acid ive a pale green solution containing compound C and a colourless gas D .
(a)	Identify by name or formula the compounds A, B, C, D and Y.
	Identity of A
	Identity of B
	Identity of C
	Identity of D
	Identity of Y

	(b)	Write the simplest ionic equation for the reaction of silver nitrate solution with the anion that is present in compound Y .
	(c)	Write the simplest ionic equation for the reaction that occurs between the green precipitate B and sulfuric acid.
		(Total 7 mark
Q6		forms many complexes that contain iron in oxidation states +2 and +3.
	(a)	Hexaaquairon(III) ions react with an excess of hydrochloric acid in a ligand substitution reaction.
		Write an equation for this reaction.
	(b)	Explain why the initial and final iron(III) complexes in the equation above have different shapes.

(c)	Hexaaquairon(II) ions react with an excess of $H_2NCH_2CH_2NH_2$ in a ligand substitution reaction.		
	Draw the structure of the iron(II) complex formed showing its charge.		
		(2)	
(d)	Hexaaquairon(II) ions react with an excess of H ₂ NCH ₂ CH ₂ NH ₂ in a ligand substitution reaction.		
	Which of the following shows the correct change in entropy for a reaction of hexaaquairon(II) ions with H ₂ NCH ₂ CH ₂ NH ₂ ?		
	Tick (✔) one box.		
	change in entropy is negative		
	change in entropy is close to zero		
	change in entropy is positive		
(e)	The percentage of iron(II) sulfate in iron tablets can be determined by titration with potassium manganate(VII) in acidic solution.	(1)	
	Deduce an ionic equation for the reaction of iron(II) ions with manganate(VII) ions.		
		(1)	
(f)	A student dissolved 1980 mg of iron tablets in an excess of dilute sulfuric acid.		
	The solution was titrated with 0.0200 mol dm ⁻³ potassium manganate(VII) solution. A 32.50 cm ³ volume of potassium manganate(VII) solution was required to reach the end point in the titration.		
	Calculate the percentage of iron in the sample of iron tablets.		

Give your answer to the appropriate number of significant figures.

	Percentage %
(g)	State the colour change at the end point in this titration.
	(Total 12 i
7. (a)	A co-ordinate bond is formed when a transition metal ion reacts with a ligand.
	Explain how this co-ordinate bond is formed.
(b)	Describe what you would observe when dilute aqueous ammonia is added dropwise, to excess, to an aqueous solution containing copper(II) ions. Write equations for the reactions that occur.

When the complex ion [$[Cu(NH_3)_4(H_2O)_2]^{2+}$ reacts with 1,2-diaminoethane,
the ammonia molecules	but not the water molecules are replaced.
Write an equation for th	s reaction.
Suggest why the enthal approximately zero.	py change for the reaction in part (c) is
Explain why the reactio change that is approxim	n in part (c) occurs despite having an enthalpy ately zero.

	\mathbf{a}
()	×
w	U.

What forms when a solution of sodium carbonate is added to a solution of gallium(III) nitrate?

A A white precipitate of gallium(III) carbonate.

B A white precipitate of gallium(III) hydroxide.

C A white precipitate of gallium(III) carbonate and bubbles of carbon dioxide.

D A white precipitate of gallium(III) hydroxide and bubbles of carbon dioxide.

(Total 1 mark)

0

Q9.

Which compound gives a colourless solution when an excess of dilute aqueous ammonia is added?

A MgCl₂

B AgCl

C CuCl₂

D AICI₃

(Total 1 mark)

Q10.

What is the final species produced when an excess of aqueous ammonia is added to aqueous aluminium chloride?

A [Al(NH₃)₆]³⁺

B [Al(OH)₃(H₂O)₃]

C [Al(OH)₄(H₂O)₂]⁻

D [Al(OH)(H₂O)₅]²⁺

(Total 1 mark)

\sim	4	4	
(J	1	1	
•			

Corrosion can be defined as the degradation of a material when it comes into contact with the environment. For iron, this process is called rusting.

(a)	When iron rusts it reacts with oxygen and water vapour in the air initially to form a brown, flaky solid that can be regarded as iron(III) hydroxide	
	Write an equation, including state symbols, for the overall reaction of the iron with oxygen and water vapour to form iron(III) hydroxide.	
		(2)
(b)	Explain why this type of corrosion is not seen on aluminium structures that have been exposed to the environment for a similar time as iron structures.	
	·	(2)
	(Total 4 mark	